
MCAT Institute

Progress Report
93-03

NASA-CR-192298
' j

DEVELOPMENT OF
COMPUTATIONAL METHODS

FOR HEAVY LIFT LAUNCH
VEHICLES

Seokkwan Yoon and James S. Ryan

(NASA-CR-192298) DEVELOPMENT OF

COMPUTATIONAL METHODS FOR HEAVY

LIFT LAUNCH VEHICLES Progress

Report (MCAT Inst.) 46 p

N93-18872

Uric|as

G3/15 0148089

February 1993 NCC2-505

MCAT Institute
3933 Blue Gum Drive

San Jose, CA 95127

Development of Computational Methods for National

Launch System

by
Seokkwan Yoon

The research effort has been focused on the development of an
advanced flow solver for complex viscous turbulent flows with shock
waves.

The three-dimensional Euler and full/thin-layer Reynolds-

averaged Navier-Stokes equations for compressible flows are solved

on structured hexahedral grids. The Baldwin-Lomax algebraic

turbulence model is used for closure. The space discretization is

based on a cell-centered finite-volume method augmented by a

variety of numerical dissipation models with optional total variation

diminishing limiters. The governing equations are integrated in time

by an implicit method based on lower-upper factorization and sym-

metric Gauss-Seidel relaxation. The algorithm is vectorized on

diagonal planes of sweep using two-dimensional indices in three
dimensions.

A new computer program named CENS3D

for viscous turbulent flows with discontinuities.

are described in Appendix A and Appendix B.

has been developed
Details of the code

With the developments of the numerical algorithm and

dissipation model, the simulation of three-dimensional viscous

compressible flows has become more efficient and accurate. The

results of the research are expected to yield a direct impact on the

design process of future liquid fueled launch systems.

APPENDIX A

Appendk A

"Solution of Three-Dimensional Navier-Stokes Equations Using an Implicit Gauss-Seidel

Scheme," The 13th International Conference on Numerical Methods in Fluid Dynamics,

July 1992.

Paper for the 13th International Conference On

Numerical Methods in Fluid Dynamics

Rome, Italy, July 6-10, 1992

SOLUTION OF THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS

USING AN IMPLICIT GAUSS-SEIDEL SCHEME

S. Yoon

MCAT Institute

MS 258-1, Moffett Field, California 94035, U.S.A.

I. Introduction

Although unstructured grid methods have been used successfully in solving the Euler equations

for complex geometries, structured zonal grid solvers still remain the most useful for the Navier-

Stokes equations because of their natural advantages in dealing with the highly clustered meshes in

the viscous boundary layers. Zonal structured grid methods not only handle reasonably complex

geometries using multiple blocks, but also offer a hybrid grid scheme to alleviate difficulties which

unstructured grid methods have encountered. Recent developments in structured grid solvers have

been focused on the efficiency as well as the accuracy since existing three-dimensional Navier-Stokes

codes are not efficient enough to be used routinely for aerodynamic design.

The author I has introduced an implicit algorithm based on a lower-upper factorization and

symmetric Gauss-Seidel relaxation. The scheme has been used successfully in computing chemically

reacting flows due in part to the algorithm's property which reduces the size of the left hand side

matrix for nonequilibrium flows with finite rate chemistryfl '3 More recently, a study 4 suggests that

the three-dimensional extension of the method is one of the most efficient ways to solve the Navier-

Stokes equations. Consequently, a new three-dimensional Navier-Stokes code named CENS3D was

produced. CENS3D requires less computational work per iteration than most existing codes on a

Cray YMP supercomputer and in addition converges reasonably fast. The performance of the code

is demonstrated for a viscous transonic flow past an ONERA M6 wing.

II. Numerical Methods

Let t be time; Q the vector of conserved variables; E, F, and G the convective flux vectors; and

/_v, /_v, and Gv the flux vectors for the viscous terms. Then the three-dimensional Navier-Stokes

equations in generalized curvilinear coordinates (_, r/, if) can be written as

o,0, + - + o,(? - + o (0 - = o

where the flux vectors are found in Ref. 4.

(1)

An unfactored implicit scheme can be obtained from a nonlinear implicit scheme by linearizing

the flux vectors about the previous time step and dropping terms of the second and higher order.

where/_ is the residual

[I + o,/xt(o_,_ + o_ + 0¢6)]_ = -/xt_

= D((E - E_) + Dn(F - F_) + D_(G - G_) (3)

and I is the identity matrix. 6Q is the correction Q n+I _ On, where n denotes the time level. De,

D,, and D(are difference operators that approximate (9_, oq,, and _9(..4, B, and C are the Jacobian

matrices of the convective flux vectors.

An efficient implicit scheme can be derived by combining the advantages of LU factorization

and Gauss-Seidel relaxation.

Here,

LD-1UdSQ =-AtR (4)

L = I+ aAt(D'_A + + D_8 + + D'_6 + - A- - B- - 6-)

D = I + aAt(.4 + - .4- + 8 + - B- + 6 + - 6-)

V = I + c_At(D'[._- + D+_8- + D_@- + _+ + _+ + 6 +)
(5)

where D_', D_', and D_" are backward difference operators, while D_', D +, and D_" are forward

difference operators.

In the framework of the LU-SGS algorithm, a variety of schemes can be developed by different

choices of numerical dissipation models and Jacobian matrices of the flux vectors. Jacobian matrices

leading to diagonal dominance are constructed so that " + " matrices have nonnegative eigenvalues

while matrices have nonpositive eigenvalues. For example,

where T_ and :_l are similarity transformation matrices of the eigenvectors of A. Another possibility

is to construct Jacobian matrices of the flux vectors approximately to yield diagonal dominance.

8 _ = 118 + _(8)/]

_ = 1[© + Z(6)I]

(7)

where

= I] (8)

for example. Here A(,4) represent eigenvalues of the Jacobian matrix .4 and n is a constant that is

greater than or equal to 1. Stability and convergence are controlled by adjusting n either manually

or automatically as the flowfield develops.

It is interesting to note that the need for block inversions along the diagonals can be eliminated

if we use the approximate Jacobian matrices of Eq. (7). Setting a = 1 and At = oo yields a Newton-

like iteration. Although a quadratic convergence of the Newton method cannot be achieved because

of the approximate factorization, a linear convergence can be demonstrated. The use of Newton-like

iteration offers a practical advantage in that one does not have to find an optimal Courant number

or time step to reduce the overall computer time.

The cell-centered finite-volume method 4 is augmented by a numerical dissipation model with

a minmod flux limiter. The coefficients of the dissipative terms are the directionaily scaled spectral
radii of Jacobian matrices.

III. Results

In order to demonstrate the performance of the CENS3D code, transonic flow calculations have

been carried out for an ONERA M6 wing. A 289 x 50 x 44 C-H mesh (635,800 points) is used as

a fine grid. The distance of the first grid point from the wing surface is 1.0 x 10 -5 times the chord

length at the root section. The freestream conditions are at a Mach number of 0.8395, Reynolds

number of 1.5 x l0 T, and a 3.060 angle of attack. This is an unseparated flow case. The algebraic

turbulence model by Baldwin and Lomax is employed for mathematical closure of the Reynolds-

averaged Navier-Stokes equations. The root-mean-squared residuals drop 3 orders of magnitude in

about 380 iterations or 38 minutes of CPU time on the fine grid. In the present implementation,

the implicit left hand side viscous terms are not included which decreases the computational work

per iteration. To investigate the effect of this left hand side compromise on the convergence rate,

a grid-convergence study has been performed using a 171 x 25 x 44 (188,100 points) coarse grid.

Although the number of radial grid points to resolve the viscous boundary layer is doubled in the

fine grid case, the fine grid convergence is slowed by only twenty percent. Fig. 1 and Fig. 2 show a

good agreement between experimental data 5 and the pressure coefficients at 44% and 65% semi-span

stations computed on the fine grid. This comparison validates the present code CENS3D.

The CENS3D code requires only 9 psec per grid-point per iteration for the thin-layer Navier-

Stokes equations with an algebraic turbulence model on a single Cray YMP processor at the sus-

tained rate of 175 Mflops. It is interesting to note that the LU-SGS implicit scheme requires less

computational work per iteration than a Runge-Kutta explicit scheme.

Conclusions

Good performance of a three-dimensional Navier-Stokes solver CENS3D based on an implicit

lower-upper Gauss-Seidel scheme is demonstrated for nonseparated transonic flow past a wing. In

addition to its reasonabe convergence rate, the code requires very low computational time per

iteration. The three-dimensional Navier-Stokes solution of a high Reynolds number flow using

636K grid points is obtained in 38 minutes. The computational results compare well with available

experimental data.

References

1. Yoon, S. and Jameson, A., "Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and

Navier-Stokes Equations," AIAA Journal, Vol. 28, Sep. 1988, pp. 1025-1028.

2. Shuen, J.S. and Yoon, S., "A Numerical Study of Chemically Reacting Flows Using a Lower-

Upper Symmetric Successive Overrelaxation Scheme," AIAA Journal, Vol. 27, Dec. 1989, pp.
1752-1760.

3. Park, C. and Yoon, S., "A Fully-Coupled Implicit Method for Thermo-Chemical Nonequilib-

rium Air at Sub-Orbital Flight Speeds," Journal of Spacecraft and Rockets, Vol. 28, No. 1,

Jan.-Feb. 1991, pp. 31-39.

4. Yoon, S. and Kwak, D., "An Implicit Three-Dimensional Navier-Stokes Solver For Compress-

ible Flows," AIAA Paper 91-1555, June 1991.

5. Schmitt, V. and Charpin, F., " Pressure Distributions on the ONERA M6 Wing at Transonic

Mach Numbers," AGARD AR-138-B1, 1979.

APPENDIX B

Appendk B

"An Implicit Navier-Stokes Solver For Three-Dimensional Compressible Flows," AIAA

Journal Dec. 1992 (to appear).

AN IMPLICIT NAVIER-STOKES SOLVER

FOR THREE-DIMENSIONAL COMPRESSIBLE FLOWS

Seokkwan Yoon *

MCAT Institute

Moffett Field, California

and

Dochan Kwak t

NASA Ames Research Center

Moffett Field, California

Abstract

A three-dimensional numerical method based on the lower-upper symmetric-Gauss-Seidel implicit

scheme in conjunction with the flux-limited dissipation model is developed for solving the compressible

Navier-Stokes equations. A new computer code which is based on this method requires only 9 psec per

grid-point per iteration on a single processor of a Cray YMP computer and executes at the sustained rate

of 175 MFLOPS. A reduction of three orders of magnitude in the residual for a high Reynolds number flow

using 636K grid points is obtained in 38 minutes. The computational results compare well with available

experimental data.

I. Introduction

* Senior Member AIAA

t Associate Fellow AIAA

Since the computational requirements for direct simulation of turbulent flows about complex three-

dimensional geometries are still beyond the reach of the most powerful supercomputers, most numerical

algorithms developed so far focus on the solution of the Reynolds-averaged Navier-Stokes equations, which

can be obtained by ensemble-averaging of rapidly fluctuating components. The governing equations of fluid

flows can be integrated by either explicit or implicit methods. Although explicit schemes have been successful

in solving the Euler equations for inviscid flows, the efficiency of explicit schemes in solving the Navier-

Stokes equations is limited by the Courant-Friedrichs-Lewy condition, which is especially restrictive when

the computational grid is highly clustered to resolve the viscous boundary layer. When the time step limit

imposed by an explicit stability bound is significantly less than the accuracy requirement, implicit schemes

are often preferred. However, the trade-off between a decreased number of iterations and an increased

operation count per iteration for the implicit methods must be considered. The fastest convergence rate

may be attained by an unfactored implicit scheme which directly inverts a large block banded matrix using

Gaussian elimination. Such a scheme is impractical in three-dimensions because of the rapid increase of the

number of operations as the number of mesh points increases and because of the large memory requirement.

Yoon and Jameson x-3 introduced an implicit algorithm based on a lower-upper factorization and

Gauss-Seidel relaxation for the Euler and Navier-Stokes equations. Since then, the lower-upper symmetric-

Gauss-Seidel (LU-SGS) scheme has been successfully implemented by many researchers. Shuen and Yoon 4

applied the method to supersonic combustion ramjet problems for the National Aero-Space Plane to take

advantage of the algorithm's property that reduces the size of matrix for reacting flows with finite rate

chemistry. The resulting computer program RPLUS was named after the original perfect gas code PLUS

(Program using LU Schemes). 1 A variation of the PLUS code named IPLUS was applied to internal flows

through turbomachinery cascades in conjunction with an interactive grid generation technique by Choo, Soh,

and Yoon. 5 Another variant named HPLUS demonstrated the robustness of an LU scheme at high Mach

numbers. 6 Rieger and Jameson 7 developed a three-dimensional code based on an early version of the PLUS

code and applied it to Hermes, the European space shuttle. Yu, Tsai, and Shuen s extended the RPLUS

code to three-dimensions. Coirier 9 developed a finite difference version of the RPLUS code for corner and

gap-seal calculations. However, the accuracy and efficiency of the above codes have been limited by the

artificialviscositymodel.10

YoonandKwak11,1_proposedthat a variety of schemes could be constructed in the framework of

the LU-SGS algorithm by different choices of Jacobian matrices of flux vectors and numerical dissipation

models. The computer code CENS2D (Compressible Euler and Navier-Stokes) was written to study the

effects of different dissipation models. It was observed that the blended first and third order model was

the least accurate while the flux-difference split upwind-biased model was not only the most expensive but

the least robust when the grid lines were not aligned with strong bow shock waves. It was concluded in

the study that the flux-limited dissipation model was a practical alternative to upwind schemes because

of its robustness, efficiency and accuracy for high speed external flows. Recently, promising results were

reported using upwind-biased and total variation diminishing schemes with the LU-SGS implicit scheme.

They include Obayashi 13 for underexpanded plumes, Chen, McCrosky, and Obayashi 14 for forward-flight

rotor flow, Loh and Golafshani 15 for flows in hybrid rocket motors, Yungster t6 for shock wave and boundary

layer interactions, and Imlay and Eberhardt lr for flows past the Aeroassist Flight Experiment vehicle. In

the meantime, the CENS2D code has been extended by Park and Yoon ls-_° to compute thermo-chemical

nonequilibrium in hypersonic external flows using a multiple temperature model.

While conventional implicit methods often achieve fast convergence rates, they suffer from greater

computer time per iteration than explicit methods. The LU-SGS implicit scheme offers a potential for very

low computer time per iteration as well as fast convergence. High efficiency can be achieved by accomplishing

the complete vectorizability of the algorithm on oblique planes of sweep in three-dimensions. 21 It has been

demonstrated that the LU-SGS scheme requires less computational work per iteration than most existing

schemes on a Cray YMP supercomputer in the case of three-dimensional viscous incompressible flows. One

of the objectives of the present work is to provide standard performance figures which the LU-SGS scheme

can achieve for three-dimensional compressible flows in conjunction with the flux-limited dissipation model

by developing a new testbed code named CENS3D.

II. The Navier-Stokes Equations

Let t be time; p, p, and T the density, pressure, and temperature; u, v, and w the velocity components

in Cartesian coordinates (x, y, z); I_ the vector of conserved variables; /_, F, and G the convective flux

vectors; and Ev, /_v, and Gv the flux vectors for the viscous terms. Then the three-dimensional Navier-

Stokes equations in generalized curvilinear coordinates (_, r/, () can be written as

o,0 + 0_($ - _)+ o,(? - ?_) + 0_(_ - 0_) = 0 (1)

The flux vectors for compressible and incompressible flows are different. The flux vectors for compress-

ible flow are

/_=h

pU

I pUu + _xp 1

I pUv + _,p I
IpUw + _,Pl
L u(e +p) J

[.v]pVu + q,_p

ff'=h|pVv+vyp|, O=h
IpWw + O,pI
[v(e + p) j

pW
[pWu + (,:p]

I pWv + ¢,p I
IpWw + ¢,p/
[w(_ +p) j

where e is the total energy. The contravariant velocity components U, V, and W are defined as

(2)

U =E,,_u+_v+&w

V = o_u + rlyv + 71_w

W =Gu+(_v+Gw

The equation of state is needed to complete the set of equations for compressible flow.

(3)

1 2

P=(7-1)[e-_p(u + v _ + wz)] (4)

where 7 is the ratio of specific heats. Here, h is the determinant of the inverse of transformation Jacobian

matrix.

h

x_ x_ x(

Y_ Y, YC
z_ z, zi

(5)

The flux vectors for incompressible flow can be written in a similar way if the pseudocompressibility

formulation 21 is used. In a finite volume formulation, h is identical to the mesh cell volume. The viscous

flux vectors are

(6)

Their Cartesian components are

G_ = h[_E_ + (yFv + _zG_]

[° 1rz_:

E_ = r_

rzz

ur_x + vr_ + wrx_ + kcO_T

I °ry_
F_ = ryy

ry.
ury_ + v_'_v + wry. + kOyT

I °]r,z

Gv = rz_
TZ Z

urzx + vl"zy 4- wrzz + kO_T

(7)

where

2
r_= = 2_O_u - -_p(O_u + Oyv + O,w)

2

ry_ = 2tacO_v - -_t_(O=u + cOyv+ cgzw)

2 "c9 u
r_, = 2_O_w - -_t_(_ + cOyv+ O_w)

r_v = ry_ = t_(cO_u+ O_v)

(8)

r=_= rz_ = _(c%u + O_w)

Here the coefficient of viscosity tt and the coefficient of thermal conductivity k are decomposed into laminar

and turbulent contributions.

P=_l+pt (9)

where Prt and Pr, denote laminar and turbulent Prandtl numbers.

While the Euler equations can be obtained by neglecting the viscous terms, the thin-layer Navier-Stokes

equations can be obtained by retaining the viscous flux vector in the direction normal to body surfaces.

III. Implicit Methods

The governing equations are integrated in time for both steady and unsteady flow calculations. For a

steady-state solution, the use of a large time step leads to fast convergence. For a time-accurate solution, it

is desirable that the time step is determined by the physics rather than the numerics. An unfactored implicit

scheme can be obtained from a nonlinear implicit scheme by linearizing the flux vectors about the previous

time step and dropping terms of the second and higher order.

where R is the residual

[I + aA_(D(A + DoE + D;6)]fQ = -l_tffl (11)

/_= D((E -/_) + Do(F - F_) + D((G - G_) (12)

and I is the identity matrix. 6_) is the correction _),+1 _ _,, where n denotes the time level. Df, D 0, and

D(are difference operators that approximate 0_, cOo,and cO(..4,/_, and C are the Jacobian matrices of the

convective flux vectors.

_ oP, oP, o_
OQ OQ

(13)

For compressible flow,

(continued)

where

u - _,:u(.r - 2)
.A= I_-Uv _v-_yu(7-1)

[_,_-Uw _w-_,u(7-1)
t U(_- h) _zh - Uu(-r- 1)

_Y

[_yu -_zv(r - 1)
| u - _ _(_ - 2)
[_yw - _,v(7 - 1)
[_yh-Uv(_ - 1)

o1_zu- _xw(7- 1) _z(1)

_zv-_uw(7-1) _y(7-1)
U - _zw(3' - 2) _(7 - 1)

_ - uw(-r - 1) u-r

4 = -L-'_(u_ + v_ + w_) (14)

h = e +p (15)
P

Matrices/3 and C are similarly derived. Although the direct inversion method seems to be competitive with

approximate factorization methods in the overall computing time in two-dimensions, 2u direct inversion of a

large block banded matrix of the unfactored scheme Eq. (11) appears to be impractical in three-dimensions

as stated before.

To alleviate this difficulty, many investigators have focused on indirect methods. The popular Alter-

nating Direction Implicit (ADI) scheme by Beam and Warming _3 or Briley and McDonald 24 replaces the

implicit operator of the unfactored scheme by a product of three one-dimensional operators.

(I+ aAtD_A)(I + aAtD.B)(I + aAtD¢C)6Q = -AiR (16)

The ADI scheme which is unconditionally stable in two-dimensions becomes unstable in three-dimensions,

although numerical dissipation conditionally stabilizes the method. Due to three factors, the ADI scheme

also introduces the error terms of (At) 3. The large factorization error associated with this scheme further

reduces the rate of convergence. In spite of these drawbacks, the ADI scheme has been successful due to

the reduction of cost by the diagonalization of Jacobian matrices by Pulliam and Chaussee. 25 Obayashi and

Kuwahara 26 developed a scheme by replacing each factor with bidiagonal LU factors.

(I + aAtD[A+)(I + aAtD_A-)(I + aAtD; B+)(I + aAtD+B -)

(I + aAID_ C+)(I + mAtD'_ C-)60 = -AIR (17)

Stability and convergence characteristics of the LU-ADI scheme appear to be similar to the ADI scheme.

The factorization errors of two-factor schemes, which are of order (At) 2, are lower than the ADI scheme.

Two-factor schemes can also be stable in three-dimensions. Steger proposed a two-factor scheme _7,2s by

partially splitting the flux vectors.

[I + aAI(D_-A + + O,B)][I + mAI(D[A- + D(C)]6¢_ =

-At(D'_ E, + + D'_ E,- + D_' + D¢(_) (18)

The scheme was incorporated in F3D code 2s'_9 and CNS code. 3° The partially flux-split scheme is more

expensive than the diagonalized ADI scheme because of block tridiagonal inversions.

An alternative two-factor scheme is based on an lower-upper(LU) factorization proposed by Steger and

Warming 2T and Jameson and Turkel sl.

LU60 =-AtR (19)

where

L = I + aAf(D'_A + + D_B + + D'_C +)

U = I + aAt(D_ A- + D + B- + D'_ C-)

(20)

where D_', D_', and D_" are backward difference operators, while D_', D +, and D_" are forward difference

operators. Despite its early introduction in the late '70s, the LU scheme had not been used until it was

independently implemented by Buning and Steger a2, Whitfield aa, Buratynski and Caughey a4' and Jameson

and Yoon. 2,a The cost of the LU scheme is more expensive than the diagonalized ADI scheme because of

block diagonal inversions.

MacCormack 35 introduced an implicit line relaxation method based on back-and-forth symmetric

sweeps in conjunction with upwind flux splittings. Although the line Gausa-Seidel relaxation method al-

lowed significant increase of work per iteration compared to approximate factorization schemes due to mul-

tiple block tridiagonal inversions and sequential operations, it achieved very fast convergence rates. In fact,

all the implicit schemes mentioned above require much larger computational work per iteration than explicit

schemes.

Yoon and Jameson 1 derived a new implicit algorithm by combining the advantages of LU factorization

and SGS relaxation. The LU-SGS scheme has quite different L and U factors from those of the LU scheme.

Unlike the line SGS relaxation scheme, no additional relaxation or factorization is required on planes of

sweep. The LU-SGS scheme can be written as

LD-'U60 = -/XtR (21)

where

L = I+ mAt(D_A + + D_B + + D'_C + - A- - B- - C-)

D = I + aAt(A + - .4- + B+ - B- + C+ - C-)

U = I + aAt(D[/- + D+B - + D'_C- + A+ + B+ + C+)

(22)

In the framework of the LU-SGS algorithm, a variety of schemes can be developed by different choices

of numerical dissipation models and Jacobian matrices of the flux vectors. 11 It is desirable that the matrix

should be diagonally dominant to assure convergence to a steady state. Jacobian matrices leading to diagonal

" matrices havedominance are constructed so that " + " matrices have nonnegative eigenvalues while "

nonpositive eigenvalues. For example,

=f,A f;' (23)

where Te and T[1 are similarity transformation matrices of the eigenvectors of A. Another possibility is to

construct Jacobian matrices of the flux vectors approximately to yield diagonal dominance.

where

_:t: = 1[._4-_(_.)I]

1[_ ± _(_)i]

, = 1[+ _(_)t]

(24)

(.) = ,¢ maz[I A(_)l] (25)

for example. Here A(A) represent eigenvalues of the Jacobian matrix A and i¢ is a constant that is greater than

or equal to 1. Stability and convergence can be controlled by adjusting ,_ either manually or automatically

as the flowfield develops. The diagonal matrix of eigenvalues is

U 0 0 0

0 U 0 0
A A

A(A)= 0 0 U 0

o o o v+c_
0 0 0 0

0

0

0
0

U-C_

(26)

and

where c is the speed of sound

(27)

c = (28)

In the early days of development of codes such as the PLUS series, the Eq. (21) was inverted in three

50° = -AtDf

80"'= L-'O"

steps as following.

(29)

This is not a mathematically correct procedure, although no difference in the solution or convergence has

been observed when D is a scalar diagonal matrix. The correct order used in INS3D-LU and CENS3D codes

is

80"= -AtL-

60 *° = DQ" (30)

It is interesting to note that the need for block inversions along the diagonals can be eliminated if we use

the approximate 3acobian matrices of Eq. (24). Setting a = 1 and /kt = oo yields a Newton-like iteration.

Although a quadratic convergence of the Newton method cannot be achieved because of the approximate

factorization, a linear convergence can be demonstrated. That is why the term Newton-like instead of Newton

is used to distinguish the differences. The use of Newton-like iteration offers a practical advantage that one

does not have to find an optimal Courant number or time step to reduce the overall computer time. If

two-point one-sided differences are used, Eq. (22) reduces to

L = _I- A+,,j,k- Bi+,j-l,k--C:j,k-1

D = _I (31)

A A A

U = _I+ A_.I.I,j, k + B_j+I,k + C_j,k+l

where

= + + (32)

A,

In the inversion process, A+-lj,k is multiplied by 6Qi_ld,k , for example. The algorithm permits scalar

diagonal inversions since

Diagonal(L or U) = [i000 1_ 0 0

0 _ 0

0 0 _

0 0 0 _J

(33)

The use of the true Jacobian matrices of Eq. (23), which might lead to a faster convergence rate, requires

block diagonal inversions and hence approximately doubles the computational work per iteration. Another

interesting feature of the present algorithm is that the scheme is completely vectorizable on i+j+k = constant

oblique planes of sweep, which is illustrated in Fig. 1. This is achieved by reordering the three-dimensional

arrays into two-dimensional arrays, that is,

Q(ipoint, iplane) = Q(i, j, k) (34)

where iplane is the serial number of the oblique plane to be swept, and ipoint is the address on that plane.

The present algorithm may also be amenable to parallel processing.

IV. Numerical Dissipation

A semidiscrete finite volume method is used to ensure the final converged solution be independent of

the time step and to avoid metric singularity problems. The finite volume method is based on the local flux

balance of each mesh cell. For example,

+ 0.P + 0¢c3=

/_,+½,_,k -- Ei-½,j,k + Fid+½,_ -/wi,j-½,_ + _:i,j,_+] - Gid,k-b (35)

A centraldifferencescheme achievesthe second order accuracy inthe most efficientway when the flow

fieldisfreeof discontinuoussolutions.However, numerical dissipationmodels are added to nondissipative

centraldifferenceschemes inorder to suppress the tendency forodd and even point decoupling.Dissipation

models are often calledfilterssincethey work likelow pass filterswhich damp out high frequency modes.

The dissipativefluxd isadded to the convectivefluxina conservativemanner.

-(di+½,j,k -- di-½ j,t + dij+½,_ - di,j-½,_ + di,j,_+½ - did,k_ _) (36)

For simplicity, di+½,j, k is denoted by di+ ½ hereafter.

It has long been recognized that charateristic-based upwind-biased schemes can demonstrate crisp

resolution of discontinuities. This is especially so when the flux-difference splitting scheme replaces Godunov's

exact solution of the Riemann problem with an approximate solution, while distinguishing between the

influence of forward and backward moving waves. High-order upwind schemes can be constructed by using

multipoint extrapolation formulas to estimate the numerical flux, or by adding higher-order dissipative

terms. In either case flux limiters are then added to control the signs of the coefficients of a semi-discrete

approximation to the hyperbolic system of equations. The dissipative coefficient for a system of equations

must be a matrix to meet the requirement of upwinding. It is sometimes necessary to add artificial dissipation

in the form of entropy correction to avoid instabilities. Considering the additional cost and reduced robustness

of the upwind-biased scheme when the grid lines are not aligned with strong shock waves, 11 it seems that the

flux-limited dissipation model with scalar coefficients can be a practical alternative to upwind dissipation with

matrix coefficients, especially when the uncertainty of the solution due to a turbulence model is relatively

large.

In the flux-limited dissipation model, the dissipative flux is constructed by introducing flux limiters

into the high order terms instead of adding low order terms.

di+½ = -_i+_[_b(cri+l)ei+] - 2ei+ ½ + _(cri)ei_½] (37)

where¢ and ¢ are flux limiting functions to limit antidiffusive fluxes

[Oifa<OJ
¢(o')= o" if O < o"< 1

lifa>l

and

Here,

and

If we write o"= _, then

(38)

¢(a) = ¢(1) (39)

ei-½
_i = -- (40)

ei+_

ei+½ = 0i+1 -- Qi (41)

(42)¢(a)a = minmod(a, b)

where minmod(a, b) is zero if a and b have opposite signs, and minmod(a, b) is the smaller of a and b if a

and b have the same sign.

(43)

where the constant _o determines a threshold, and the constant _¢1 is chosen to ensure that there is enough

dissipation to suppress numerical oscillations in the neighborhood of shock waves, r(A) denotes the spectral

radius of the Jaeobian matrix .4 and vi+½ is a sensor.

where

/'i+½ = max(vi+l, vi) (44)

vi = max(v_i, viT) (45)

vT =1T_+_ - 2T_+ T,_I I/(T_+_ + 2T, + T___)

Here p and T are the pressure and the temperature.

(47)

V. Results

The LU-SGS algorithm can be completely vectorized and its efficiency is demonstrated by the CENS3D

code on a Cray YMP supercomputer at NASA Ames Research Center. The CENS3D code requires only 9

psec per grid-point per iteration for the thin-layer option of the Navier-Stokes equations with an algebraic

turbulence model on a single processor at the sustained rate of 175 MFLOPS. Approximately 55%, 20%

and 20% of the computing time are spent for the implicit matrix operation, the numerical dissipation and

the evaluation of viscous fluxes respectively. It is interesting to note that the LU-SGS scheme requires less

computational work per iteration than some explicit schemes. Based on experience with INS3D-LU _I, an

incompressible flow code which employs the LU-SGS scheme and achieved 1.2 GFLOPS using 8 processors, 3s

the CENS3D is expected to perform very well on shared-memory multiple processors. The LU-SGS algorithm

has outperformed the existing implicit schemes on a massively parallel computer such as the Connection

Machine CM-2 in a recent study, aT

In order to validate the new CENS3D code, calculations have been performed for a NACAf4A010

wing. The thickness to chord ratio of the wing, whose aspect ratio is 4, has been modified to 10.6%. The

experiment was conducted in the RAE 8 x 8 foot wind tunnel by Mabey et al. as The model was mounted on

a fuselage-like body to displace it slightly from the wind tunnel wall and its boundary layer. However, no

attempt has been made here to model the test section. A 151 x 39 x 39 C-H mesh (229,671 points) generated

by Chaderjian 39 is used for the present calculation. Figure 2 shows a partial view of the computational

grid. The freestream conditions are Mach 0.8, Reynolds number 2.4 x l0 s, and zero angle of attack. The

algebraic turbulence model by Baldwin and Lomax 4° is employed for mathematical closure of the Reynolds-

averaged Navier-Stokes equations. Original coefficients are used except C,_k, the coefficient for F_ake is set

to 1 insteadof 0.25asdonein Ref. 39. They+ values at the first mesh cells which are adjacent to the

wing surface near the midspan are about 2. The convergence history in Fig. 3 shows that the root-mean-

squared residual of the continuity equation drops 3 orders of magnitude in about 340 iterations or 12 CPU

minutes. Pressure contours are shown in Fig. 4. The computed pressure coefficients are compared with

experimental data and the numerical solution of Chaderjian z9 in Figs. 5-7. His code uses a finite-difference

discretization, artificial dissipation using blended second and fourth differences, a diagonalized ADI scheme,

and the Baldwin-Lomax turbulence model. Figures 5-7 correspond to Cp comparisons at 50%, 77%, and

94% semi-span stations respectively. Values at the leading and trailing edges are not available for plotting

because flow variables are located at cell centers. Overall agreements between the two numerical solutions

are seen to be good despite the differences in numerical formulation. The slight discrepancy between the

experimental data and the numerical solutions may be due to the effects of the fuselage-like body at the

wing root and the wind tunnel wall which are not modeled in the numerical simulations.

For additional validation of the code, transonic flow calculations have been carried out for a ONERA

M6 wing. A 289 x 50 x 44 C-H mesh (635,800 points) is used as a fine grid. The distance of the first grid point

from the wing surface is 1.0 x 10 -5 chord length of the root section. The freestream conditions are Mach

0.8395, Reynolds number 1.5 x 107, and 3.06 ° angle of attack. The Baldwin and Lomax turbulence model

is used again for the attached flow simulation. The residual drops to 3 orders in about 380 iterations or 38

minutes of CPU time on the fine grid. In the present implementation, implicit viscous terms are not included

to avoid the increase of computational work per iteration. To investigate the effect of this compromise on

the convergence rate, a grid-convergence study has been performed. Fig. 8 shows the convergence histories

on both fine grid and a 171 x 25 x 44 (188,100 points) coarse grid. Although the number of grid points to

resolve the viscous boundary layer is doubled, the convergence is seen to be slowed by only twenty percent.

Fig. 9 and Fig. 10 show a good agreement between experimental data 41 and the pressure coefficients at 44%

and 65% semi-span stations computed on the fine grid.

Conclusions

A three-dimensional numerical method based on the LU-SGS implicit scheme in conjunction with

the flux-limited dissipation model is developed for simulating viscous turbulent compressible flows. Good

performance of the new testbed code is demonstrated on a Cray YMP computer. Despite its reasonably fast

convergence, the LU-SGS scheme requires very low computational time per iteration. The present three-

dimensional Navier-Stokes solution of a high Reynolds number flow using 636K grid points is obtained in 38

minutes.

References

1. Yoon, S. and Jameson, A., "Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-

Stokes Equations," AIAA Paper 87-0600, Jan. 1987. AIAA Journal, Vol. 26, Sep. 1988, pp. 1025-1026.

2. Yoon, S., "Numerical Solution of the Euler Equations by Implicit Schemes with Multiple Grids," MAE

Report 1720-T, Princeton University, Sep. 1985.

3. Jameson, A. and Yoon, S., "Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equa-

tions," AIAA Journal, Vol. 25, July 1987, pp. 929-935.

4. Shuen, J.S. and Yoon, S., "A Numerical Study of Chemically Reacting Flows Using a Lower-Upper

Symmetric Successive Overrelaxation Scheme," AIAA Journal, Vol. 27, Dec. 1989, pp. 1752-1760.

5. Choo, Y.K., Soh, W.Y., and Yoon, S., "Application of a Lower-Upper Implicit Scheme and an Inter-

active Grid Generation for Turbomachinery Flow Field Simulations," ASME Paper 89-GT-20, June

1989.

6. Yoon, S., and Jameson, A., "Lower-Upper Implicit Scheme for High-Speed Inlet Analysis," AIAA

Journal, Vol. 25, Aug. 1987, pp. 1052-1053.

7. Rieger, H. and Jameson, A., "Solution of Steady Three-Dimensional Compressible Euler and Navier-

Stokes Equations by an Implicit LU Scheme," AIAA Paper 88-0619, Jan. 1988.

8. Yu, S.T., Tsai, Y.L.P., and Shuen, J.S., " Three-Dimensional Calculation of Supersonic Reacting Flows

Using an LU Scheme," AIAA Paper 89-0391, Jan. 1989.

9. Coirier,W.J., " High Speed Corner and Gap Seal Computations Using an LU-SGS Scheme," AIAA

Paper 89-2669, July 1989.

10. Jameson, A., Schmidt, W., and Turkei, E., " Numerical Solution of the Euler Equations by Finite

Volume Methods Using Runge-Kutta Time Stepping Schemes," AIAA Paper 81-1259, 1981.

11. Yoon, S. and Kwak, D., "Artificial Dissipation Models for Hypersonic External Flow," AIAA Paper

88-3708, July 1988.

12. Yoon, S. and Kwak, D., "Artificial Dissipation Models for Hypersonic Internal Flow," AIAA Paper

88-3277, July 1988.

13. Obayashi, S., "Numerical Simulation of Underexpanded Plumes Using Upwind Algorithms," AIAA

Paper 88-4360-CP, Aug. 1988.

14. Chen, C.L., McCrosky, W.J., and Obayashi, S., " Numerical Solutions of Forward-Flight Rotor Flow

Using an Upwind Method," AIAA Paper 89-1846, June 1989.

15. Loh, H.T. and Golafshani, M., "Computation of Viscous Chemically Reacting Flows in Hybrid Rocket

Motors Using an Upwind LU-SSOR Scheme," AIAA Paper 90-1570, June 1990.

16. Yungster, S., "Numerical Study of Shock-Wave/Boundary Layer Interactions in Premixed Hydrogen-

Air Hypersonic Flows," AIAA Paper 91-0413, Jan. 1991.

17. Imlay, S.T. and Eberhardt, S., " Nonequilibrium Thermo-Chemical Calculations Using a Diagonal

Implicit Scheme," AIAA Paper 91-0468, Jan. 1991.

18. Park, C. and Yoon, S., "Calculation of Real-Gas Effects on Blunt-Body Trim Angles," AIAA Paper

89-0685, Jan. 1989.

19. Park, C. and Yoon, S., "A Fully-Coupled Implicit Method for Thermo-Chemical Nonequilibrium Air

at Sub-Orbital Flight Speeds," AIAA Paper 89-1974, June 1989.

20. Park, C. and Yoon, S., "Calculation of Real Gas Effects on Airfoil Aerodynamic Characteristics," AIAA

Paper 90-1712, June 1990.

21. Yoon, S., Kwak, D., and Chang, L., "LU-SGS Implicit Algorithm for Three-Dimensional Incompressible

Navier-Stokes Equations with Source Term," AIAA Paper 89-1964-CP, June 1989.

22. Giles, M., Drela, M., and Thompkins, W.T., "Newton Solution of Direct and Inverse Transonic Euler

Equations," AIAA Paper 85-1530-CP, 1985.

23. Beam, R. and Warming, R.F, "An Implicit Factored Scheme for the Compressible Navier-Stokes Equa-

tions," AIAA Journal, Vol. 16, Apr. 1978, pp. 393-402.

24. Briley, W.R. and McDonald, H., "Solution of the Multidimensional Compressible Navier-Stokes Equa-

tions by a Generalized Implicit Method," Journal of Computational Physics, Vol. 24, No. 4, Aug.

1977.

25. Pulliam, T.H. and Chaussee, D.S., "A Diagonal Form of an Implicit Approximate Factorization Algo-

rithm," Journal of Computational Physics, Vol. 39, 1981, pp. 347-363.

26. Obayashi, S. and Kuwahara, K., "LU Factorization of an Implicit Scheme for the Compressible Navier-

Stokes Equations," Journal of Computational Physics, Vol. 63, Mar. 1986, pp. 157-167.

27. Steger, J.L. and Warming, R.F., "Flux Vector Splitting of the Inviscid Gasdynamic Equations with

Application to Finite Difference Methods," Journal of Computational Physics, Vol. 40, No. 2, Apr.

1981, pp. 263-293.

28. Ying, S.X., Steger, J.L., Schiff, L.B., and Baganoff, D., "Numerical Simulation of Unsteady, Viscous,

High Angle-of-Attack Flows Using a Partially Flux Split Algorithm," AIAA Paper 86-2179, 1986.

29. Rizk, Y.M., Chaussee, D.S., and Steger, J.L., "Numerical Simulation of the Hypersonic Flow Around

Lifting Vehicles," NASA TM-89444, 1987.

30. Edwards, T.A. and Flores, J., "Toward a CFD Nose-to-Tail Capability: Hypersonic Unsteady Navier-

Stokes Code Validation," AIAA Paper 89-1672, 1989.

31. Jameson, A. and Turkel, E., "Implicit Schemes and LU Decompositions," Mathematics of Computation,

Vol. 37, No. 156, 1981, pp. 385-397.

32. Buning, P.G. and Steger,J.L.,"Solutionof the Two-Dimensional Euler Equations with Generalized

Coordinate Transformation Using Flux Vector Splitting,"AIAA Paper 82-0971, 1982.

33. Whitfield,D.L., "ImplicitUpwind FiniteVolume Scheme forthe Three-Dimensional Euler Equations,"

MississippiState UniversityReport MSSU-EIRS-ASF_,-85-1, Sep. 1985.

34. Buratynski, E.K. and Caughey, D.A., "An ImplicitLU Scheme for the Euler Equations Applied to

Arbitrary Cascades," AIAA Paper 84-0167, 1984.

35. MacCormack, R.W., "Current Status of Numerical Solutionsof the Navier-Stokes Equations," AIAA

Paper 85-0032, 1985.

36. Fatoohi, R. and Yoon, S., " Multitasking the INS3D-LU Code on the Cray Y-MP," AIAA Paper

91-1581,June 1991.

37. Fatoohi,R., PrivateCommunication.

38. Mabey, D.G., Welsh, B.L., and Pyne, C.R., "A Summary ofMeasurements of Steady and Oscillatory

Pressureson a Rectangular Wing," The AeronauticalJournal of the Royal AeronauticalSociety,Jan.

1988.

39. Chaderjian, N. M. and Guruswamy, G. P., "Unsteady Transonic Navier-Stokes Computations for an

Oscillating Wing Using Single and Multiple Zones," AIAA Paper 90-0313, Jan. 1990.

40. Baldwin, B.S. and Lomax, H., " Thin-Layer Approximation and Algebraic Model for Separated Tur-

bulent Flow," AIAA Paper 78-0257, Jan. 1978.

41. Schmitt, V. and Charpin, F., " Pressure Distributions on the ONERA M6 Wing at Transonic Mach

Numbers," AGARD AR-138-B1, 1979.

Parallel Computation of 3-D Navler-Stokes
Flowflelds for Supersonic Vehicles

by

James S. Ryan

This project involved development and testing of CFD tools for

use on parallel computers. In the short term, this work supports

development of High Speed Civil Transport (HSCT) designs as part of

the High Performance Computing and Communications Program

(HPCCP) Grand Challenges. The long-range goal is to enable

teraflops-rate multidisciplinary optimization of aerospace vehicles.

A more complete description of both the program and the technical

results is given in the attached paper, James S. Ryan and Sisira

Weeratunga, "'Parallel Computation of 3-D Navier-Stokes Flowfields

for Supersonic Vehicles," AIAA Paper 93-0064, Reno, NV, January

1993.

M2Lrd_t.a.a.

The following is the list of planned accomplishments from the

proposal, along with the work done to satisfy each of them:

1. Rebuild the essential features of the serial CNS code

around the parallel ARC3D algorithm developed by Sisira

Weeratunga. This will satisfy the HPCCP milestone for June
1992.

The I/O routines required for use of the code were completed

in the previous contract period. The Baldwin-Lomax model was

parallelized, and include in the CFD code. A c-grid boundary
condition was added to the code, for cases where the cut lies in a

single processor.

Going beyond CNS capabilities, Weeratunga added Chimera-grid

capabilities to the code, and I used this new feature to compute flow

for a wing-body-nacelle case.

2. Validate the parallel CNS code using simple test cases
which have analytical or experimental data available.

F Initial testing showed identical numerical behavior to the

ARC3D algorithm on a Cray computer, so validation results from the

Cray should be applicable here. The following cases have been

computed to add confidence and demonstrate applicability to HSCT
cases.

Flat plate boundary layer cases were used to test the laminar

and turbulent capabilities. Results at Mach 2.0 match computational

and analytical results well. A wing-body Euler calculation showed

good agreement to available Cray results using the UPS space-

marching code.

3. Demonstrate the success of CNS on the Intel iPSC/860

by solving an HSCT wing-body case. The first case will use

a single zone grid, but multiple processors.

An Euler case completed as this contract period was beginning,

satisfied this item. The geometry was a modern supersonic transport

design. In addition, the Euler case was used to test the scalability of

the code, and a fine-grid version was run to provide better

validation. Results compared well with UPS results from the Cray Y-

MP. Another single-zone case treated the same body with turbulent

flow at a Reynolds number of 1 million based on body length.

4. Solve an HSCT wing-body case with multiple zones and

a finer grid. This will meet the HPCCP milestone for
January 1993.

The multiple-zone capability was tested by the addition of

engine nacelles to two HSCT geometries. The first case run was one

nacelle and the wing lower surface of a proprietary HSCT geometry.

In order to generate results on a less sensitive (but still proprietary)

geometry, generic nacelles were added to the existing wing-body

grid. Overset gridding was used, adding only about 3% overhead

relative to single-zone computations on the same grids.

5. Support development of an optimizing version of CNS.

As planned, this was a low-level effort, consisting mainly of

helping others learn to use the Intel parallel computer effectively.

2

Other Work

In addition to the purely technical work, considerable effort

was applied to disseminating results, and to exposing this work

within the HPCC program. This resulted in the following

presentations and contributions to presentations made by others:

November 1991:

• Provided a graphic representing my wing-body results and

computational rates to Tom Edwards for use in a review for Ron

Bailey. Bailey responded favorably to the results, which were

possibly the first 3-D external flow calculations on the massively

parallel machines. He suggested sending the results to Washington.

• Presented my results from tests of the Concurrent File System

(CFS) on the iPSC/860 to a Parallel I/O Special Interest Group at

Supercomputing '91 in Albuquerque, New Mexico. The presentation

was well received by the Intel personnel and other researchers

present.

December 1991:

• Completed production of a video explaining my CFD work on

the Intel computer, and its place in HPCCP. The content was directed

at interested non-technical viewers, such as congressmen who would

be shown the video as part of the budgeting process. The video went

to Washington with Ken Stevens for review within NASA. Portions

were included in a professionally produced video called "Grand

Challenges 1993."

January 1992:

• Presented a review of the Branch's work on the HPCCP HSCT

Grand Challenge to Lee Holcomb of NASA Headquarters.

February 1992:

• Provided print and transparency graphics to Terry Hoist, Ken

Stevens, and Tom Lasinski. These HPCCP-related graphics depicted

my HSCT test-case solution on the Intel iPSC/860.

• Provided copies of my CFS I/O paper to Intel employees at
Ames and at Caltech.

May 1992:

• Provided graphics of wing-body Euler results to Jolen Flores,

with additional information for use by Paul Kutler.

• Presented recent results to the local CAS applications group,

and prepared slides for a more extensive presentation in Cleveland
next month.

June 1992:

• Attended the Computational Aerosciences Industry Briefing at

Cleveland, Ohio. Presented a 20 minute (plus questions) talk on

recent work in the use of parallel computers for Navier-Stokes CFD

computations.

August 1992:

• Presented a talk entitled "'Parallel Navier-Stokes Computation

of Supersonic Vehicle Flowfields," at the NASA Computational

Aerosciences Conference, August 18-20, 1992. A compendium of

abstracts was published.

• Prepared materials for inclusion in the HPCCP annual report

being prepared by Lee Holcomb at NASA headquarters.

October 1992:

• Sent out a 427 form, proposing to present the content of AIAA

Paper 93-0064 at the "Parallel CFD '93" Conference in Paris, France,

in May of 1993. This 427 will probably be rejected, on grounds of

economic sensitivity of the technology.

4

AIAA 93-0064 .
Parallel Computation of 3-D Navier-Stokes
Flowfields for Supersonic Vehicles

J. S. Ryan
MCAT Institute

S. K. Weeratunga
Computer Sciences Corporation

31 st Aerospace Sciences
Meeting & Exhibit

January 11-14, 1993 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics

370 L'Enfant Promenade, S.W., Washington, D.C. 20024

PARALLEL COMPUTATION OF 3-D NAVIER-STOKES
FLOWFIELDS FOR SUPERSONIC VEHICLES

James S. Ryan" and Sisira Weeratungat
NASA Ames Research Center

Moffett Field, California

Abstract

Multidisciplinary design optimization of aircraft

will require unprecedented capabilities of both analy-

sis software and computer hardware. The speed and

accuracy of the analysis will depend heavily on the

computational fluiddynamics (CFD) module which is

used. A new CFD module has been developed to com-

bine the robust accuracy ofconventionalcodes with the

abilityto run on parallelarchitectures.This isachieved

by parallelisingthe ARC3D algorithm,a central-differ-

enced Navier-Stokes method, on the InteliPSC/860.

The computed solutions are identicalto those from

conventional machines. Computational speed on 64

processors iscomparable to the rate on one Cray Y-

MP processor,and willincreaseas new generationsof

parallelcomputers become available.

Objective and Motivation

New aerospace vehiclesmust meet higher stan-

dards than ever before, in order to provide techni-

cal and economic advantages over older generationsof

aircraft.They must offerlow maintenance costsand

economical fuelconsumption. Lower limitswillbe en-

forced for pollutant emissions and airport noise. On

many routes,supersonic flightmay provide a compet-

itiveadvantage, leading to interest in a High Speed

Civil"Pransport(HSCT). For such a transportaircraR,

supersonic flightmust be combined with environmen-

tallyacceptable sonic boom levels.Additionally,effi-

cientsubsonic cruisemust be possible,to ensure access

of the HSCT to areas where supersonic flightmay be

prohibited. In order to design such an aircraft,itis

no longer adequate to considerexternalaerodynamics,

propulsion,structures,and controlsin isolation.The

simulationsused toevaluatea designmust take intoac-

count severalof these disciplinesforeach flightregime,

from takeoffand landing, to transonic operation, to

supersoniccruise.Numerical optimizerswilluse a series

* MCAT Institute, Member AIAA

t Computer Sciences Corporation, Member AIAA

Copyright (_1993 by the American Institute of
Aeronautics and Astronautics, Inc. A/I rights reserved.

of such simulations to find optimal values for large sets

of design parameters.

These multidisciplinary simulations will require

computational power beyond the reach of traditional

vector supercomputer architectures. The High Per-

formance Computing and Communications Program

(HPCCP) has selected the HSCT as one of several

Grand Challenges, which will be used to explore the

power of parallel computers, while simultaneously con-

tributing to the solution of problems of scientific, tech-

nical, and economic importance. As a step toward mul-

tidisciplinary computation on highly parallel comput-

ers, a parallel CFD code has been developed. This CFD

module is designed for integration with modules provid-

ing analysis capabilities for structures, propulsion, and

other disciplines, to create a complete multidisciplinary

design tool.

This project also provides feedback to the de-

velopers of parallel architectures, hardware, operating

systems, and compilers. The practical experience of

building aerospace design tools on parallel computers

can encourage and guide the development of the next

generationof parallelhardware and software.

Technical Approach

The present work focuseson the development of

a versatilecomputational fluiddynamics module for

High Speed CivilTransport (HSCT) flow fields.Bun-

ing's_Ovedlow l" implementation of ARC3D 2servesas

the basisfor the parallelversiondescribed in the next

section. By basing the flow solveron existing,well-

proven serialalgorithms,the uncertaintiessurrounding

a totallynew algorithm are avoided. The new par-

allelversionof ARC3D gives resultswhich are iden-

tical,aside from roundoff error,to those from Cray

versions.

Complex vehicledesignsare often difficultto grid

in a singlezone. Building a usable single-zonestruc-

tured grid around a wing-body with nacellesisdiffi-
cult.With the addition of controlsurfacesand an em-

pennage, the problem becomes practicallyimpossible.

This problem isalleviatedby gridding components of

the aircraftseparately,eitherin a patched or overset

grid approach. The presentcode includesboth of these

capabilities.The patched grid approach isbased on

the successfulmethods used in such codes as TNS 3

and CNS, 4 although the parallelimplementation re-

quired complete re-coding.The overset,or Chimera 5,

approach is based on the "Overflow" code, and uses

input from eitherPegsus 4.06,or Meakin's DCF3D v

code. Each zone isbuiltso that itsoutermost points

correspond to interiorregions of the adjacent zones.

The griddingofeach zone isindependent,except inthe

overlap areas ofpatched grids.The implementation of

the Chimera gridsisdescribedin a latersection.

In addition to the usual physicalboundary con-

ditions, _boundary condition coupling" willserve to

integratethe CFD module with other disciplines.For

example, pressuresfrom the CFD module can provide

input toa structurescode, which willfeedback a modi-

fiedsurfaceshape to the CFD code. This surfaceshape

requiresmodificationof the flowfieldgrid in the CFD

problem. For unsteady problems, the surfacevelocity

becomes one of the boundary conditionsfor the next

flow solveriteration.Each disciplinecan provide up-

dated boundary conditionsfor the others,as often as

necessary to provide time accuracy in each part ofthe

problem.

Algorithm Implementation

The InteliPSC/860 System

The InteliPSC/860 system isan aggregateofinter-

connected processornodes. Each processor,or compu-

tationalnode, consistsof an Inteli860 microprocessor

with memory and inter-node communication compo-

nents. The iPSC/860 at NASA Ames Research Cen-

ter consistsof 128 such nodes, each with 8 Mbytes of

memory. The i860 is a 40 MHz reduced instruction

set (RISC) microprocessorchip with a theoreticM peak

execution rate of 32 MIPS integerperformance and

60 Mflops 64-bitfloating-pointperformance. The 128

node iPSC/860 deliversan aggregate peak performance

of over 7 Gflops on {_4-bitdata and supports a total

of one Gbyte of random access memory. These peak

performance ratesare based on idealconditionswith

regard to the mix of instructions,cache utilization,

pipelining,data alignment etc. Such optimal condi-

tions do not occur in practicalapplicationssuch as
CFD.

The processorsin the 128 node iPSC/860 are in-

terconnected by a 7-dimensional hypercube commu-

nication network. Each computational node inter-

faces with the network through a dedicated commu-

nication processor called the Direct Connect Module

(DCM). The DCM can supervise up to 8 fullduplex

serialchannels simultaneouslywith a peak data transfer

rate of 2.8 Mbytes per second per channel. It also

provides hardware by-pas_ switching (i.e.,worm-hole

routing) for every node in the system. As a result,

mc_ages can pass equally quickly between adjacent

nodes and nodes at the opposite corners of the in-

terconnection network, provided there is no linkcon-

tention.Thus, iteffectivelyemulates a fullyconnected

network, with very littlepenalty fornon-localcommu-

nication.

Attached tothe communication network are I0 I/O

nodes, each of which isan Intel80386 processor with

approximately 700 Mbytes of disk space. These I/O

nodes form the Concurrent File System (CFS) with

a total capacity of 7 Gbytes. The disks in the CFS

are directlya_cessibleto the computational nodes over

the interconnection network. The peak data trans-

fer rate between a single computational node and the

CFS is about 1.5 Mbytes per second. This translates

into a peak transfer rate of approximately 15 Mb/sec.
However, the actual transfer rates realized in practical

computations are much lower due to contention for I/O
nodes, network congestion and inei_cient cache utiliza-
tion.

The iPSC/860 is controlledby an intermediate

host computer, referred to as the System Resource

Manager (SRM). The SRM serves as the machine's

interfaceto the outside world by providing such func-

tionsassystem resourcemanagement and externalnet-

work access. Each of the computational nodes in the

iPSC/860 system runs a simplifiedoperating system

kernel known as NX/2 that supervisesprocess execu-

tion and supports buffered,queued memage passing

over the interconnectionnetwork with other computa-

tionalnodes, I/O nodes and the SRM.

In distributedmemory machines such as the iPSC/

860, there isno globally shared, directlyaddressable

memory. Instead,each processor has a privateaddress

space in a privatememory. As a result,each proces-

sor runs itsown version of the program and data is

communicated between processorsby means ofa "send-

receive"protocol explicitlycoded in each program. In

addition to the sharingof information,thismechanism

isalso the primary means of synchronizationbetween

processors.Consequently, computation on distributed

memory machines can be visualizedas a system of

communicating sequentialprocesses.The messages ex-

changed have relativelyhigh communication latencies

(approximately 85-150 microseconds) and low commu-

nicationbandwidths. Hence, there isa significantper-

formance penalty for moving data between processors

frequentlyand/or in largequantities.

ParallelImplementation Considerations

The goal of the parallelimplementation isthe ex-

tractionof maximum parallelismto minimize the ex-

ecution time of the applicationon a given number of

processors. However, there are several different types
of overheads associated with a parallel implementation.

These include communication overhead, data depen-

dency delays, load imbalance, arithmetic overhead, and

memory overhead. Here, the arithmetic and memory

2

overheads referto the extra arithmeticoperationsand

memory needed by the parallelimplementation when

compared with the best equivalentserialimplementa-

tion. While the firstfour types of overheads lead to

performance degradation, the memory overhead may

limitthe sizeofthe problem that can be run on a given

system. In practice,minimizing allthese overheads si-

multaneously isdifficult.Thus, most practicalparallel

implementations requirethe developertomake compro-

mises with regard to differenttypes of overheads with

the overallgoalof achievinga near-minimum execution

time,subjectto a reasonable programming effort.

A given applicationconsistsofseveraldifferent,in-

dependent algorithmicphases that must be performed

ina prescribedsequentialorder. Inaddition,the degree

ofparallelismand the type ofdata dependencies associ-

ated with each ofthesesubtasks can vary widely.Here

the degree of parallelismrefersto the order of mag-

nitude of the number of finestgranularityconcurrent
subtasks.

The versionofARC3D implemented in thisstudy

isthe diagonal form ofthe Beam and Warming implicit

approximate factorizationalgorithm for the solution

of the Reynolds-averaged Navier-Stokes equations2. A

singletime step ofthisimplicittime integrationscheme

can be considered to comprise six differenttypes of

subtasks: (a) enforcement of boundary conditions,(b)

formation of right hand side vector (RHS) involving

Euler,viscousand smoothing terms,(c)block-diagonal

matrix-vector multiplicationsinvolving (5x5) elemen-

tal similaritytransformation matrices, (d) formation

of scalarpentadiagonal systems ofequations involving

Euler, viscous and smoothing terms, (e) solution of

multiple,independent systems of scalarpentadiagonal

equations and (f) solution update. In the following

section,we describe each of these tasks with respect

to their impact on the parallelimplementation. In

thisdiscussion,N refersto a typicaldimension of the

computational domain.

The degree of extractable parallelismassociated

with subtask (a) isO(N:2). In addition,since the en-

forcement of boundary conditionsisdone only at the

boundaries of the computational domain, the distribu-

tion of load isnot homogeneous. The severityof this

load imbalance isdependent on the mix of boundary

conditionsused inthe application.While most bound-

ary conditionshave only localspatialdata dependen-

cies,thereareothersthat containnon-localspatialdata

dependencies. Examples of such boundary conditions

are C-grid flow-through conditions,periodic/axiscon-

ditionsand evaluationofsurfacepressurebased on nor-

realmomentum equations. Enforcement of such non-

localboundary conditionsmay requireinter-processor

communication and could occupy a significantfraction

of run time. The only mitigatingfactoristhat in most

practicalproblems, the ratio of boundary to interior

points issmall.

The subtasks of type (b),(c),(d) and (f)are typ-

ifiedby O(N 3) degree of extractableparallelismwith

homogeneous distributionof the computational load.

In addition,the spatialdata dependencies associated

with these tasks are highly localized.They are either

nearest or next-to-nearestneighbor for second-order

spatialaccuracy.

The sequentiallyoptimum algorithm for subtask

(e)involvessecond-orderrecursion.This eliminatesthe

possibilityofextractingany parallelismin the solution

ofa single,scalarpentadiagonal system. Therefore,to

extractany concurrency inthe solutionofsuch a system

requiresthat the sequentialalgorithm be replaced by

one with exploitableparallelism.Most such algorithms

incur substantialarithmetic and communication over-

heads and may not reduce the execution time signifi-

cantly. However, subtask (e) involves the solutionof

multiple,independent systems ofscalarpentadiagonal

equations ineach coordinatedirection,with the multi-

plicitybeing O(N2). This exposes an easilyextractable

O(N 2) degreeof parallelism.The degree ofextractable

parallelismcan be furtherenhanced by using the con-

cept ofpipelineddata parallelcomputation. This isone

of the approaches used in thisstudy.

Data PartitioninginARC3D

Analysis of the extractableparallelismof various

subtasks of ARC3D in the previous sectionindicates

that the finestlevelof subtask granularityfor most

computations isat the grid-pointlevel.The exception

isforthe subtasks of type (e),where the finestlevelof

granularityisat the levelof a group of grid points in

a given coordinate direction.Therefore, itisnatural

to decompose the data space of ARC3D at the levelof

group ofgrid pointsin each coordinate direction.This

isreferredto as grid partitioning.The idea isto map

the subdomains (i.e.,processes)so created onto the

processors in such a way that the distribution of grid

points leads to a nearly balanced load of computation
and communication. It is also desirable to maintain

the spatial locality of the grid structure in order to
minimize the amount of communication.

In the case of structured grids, as used in ARC3D,

this is easily achieved by partitioning the computa-

tional domain into logically congruent, nearly equal-

sized rectangular parallelepiped-shaped subdomains.

Since the subgrids created by this partitioning are

themselves structured, the nodal programs written for
the individual processors will bear a close resemblance

to the program structure of a sequential implemen-
tation. The parallel implementations based on such

partitioning schemes poems the following characteris-

tics: (1) the underlying numerical algorithms are not

changed, i.e., the parallel implementation give exactly

the same results as the sequential version; (2) proces-

sors are programmed homogeneously, i.e., the Single

Program, Multiple Data (SPMD) model is used; (3)

implementations areindependent ofthe topology ofthe

interconnectionnetwork and the number of computa-

tionalnodes (provided the localmemory capacity is

sufficientfora problem of a given size);(4) communi-

cationpatternsfordata exchange among processorsare

simplified;(5) computational and communication load

are equallydistributedamong the processorsfortasks

with homogeneous, grid-pointlevelparallelism.

In thisstudy, one grid subdomain is assigned to

each of the processors.Such a partitioningscheme is

referredto as a uni-partitioningscheme. The simplest

and most commonly used structuredgrid partitioning

scheme slicesthe computational domain along planes

normal toeach ofthe coordinatedirections.As a result,

the maximum number of partitionsin a given coordi-

nate directionislimitedto the number of grid points

in that direction.When the computational domain is

slicedonly along one coordinatedirection,itisreferred

to as a 1-D partitioning.Similarly,slicingthe grid in

two or three coordinate directionsgives a 2-D or 3-D

partitioningscheme, respectively.

The highest dimensionality of the partitioning

scheme that can be used fora given grid-orientedalgo-

rithm depends on the degree ofextractableparallelism

of that algorithm. The optimum partitioningdepends

on the algorithm'scomputational and communication

requirements, machine architecturalfeatures,and the

number ofgrid pointsineach coordinatedirection.For

a problem offixedsize,use ofhigherdimensionalparti-

tioning,iffeasible,facilitatesthe use ofa largernumber

of processors.

Implementation Details of ARC3D

We have implemented ARC3D on the iPSC/860

by using 3-D uni-partitioning of the computational do-

main. HoweveL 1-D and 2-D uni-partitionings are sub-

sets of this implementation. Each subdomain is as-

signed to a computational node of the iPSC/860. This

assignment can be either algebraic (i.e., i-th subdomain

to the i-th processor) or it can be in such a way that

neighboring subdomains are mapped onto processors

that are directly connected in the hypercube communi-

cation topology. Such a mapping is feasible for all three

types of partitionings because the hypercube topology

allows the embedding of rings, 2-D and 3-D meshes

through the binary reflected Gray code. One advantage

of a such an assignment scheme over a naive assignment

is that it tends to minimize the distances traveled by the

messages and the potential for network link contention,

at least in data exchanges involving neighboring sub-

domains. However, our experimental performance data

do not show any significant advantage for this type of

process-to-processor mapping scheme. This appears to

partially substantiate Intel's claims regarding DCM's

ability to mimic the appearance of a fully-connected
network.

Under this statically determined uni-partitioning

scheme, the solutionvariablesheld ineach subdomain

are computed by theirassociatedcomputational node.

During the RHS evaluation,interiorfaces of a sub-

domain requiresolution values held by the adjacent

subdomains. A given subdomain may require such

data from up to six other subdomains. Instead of

exchanging these values exactly at the instant they

are required,the data are stored in so-calledoverlap

areas by allocatingstorage for one extra grid point
in each of the six directionsof the subdomain com-

putational grid. This allows for the exchange of in-

ternalboundary data by processors holding adjacent

subdomains via a few, relativelylong messages. As

a result,the cost of latency associated with message

passing isminimized, resultingin reduced communi-

cation overhead. However, the allocationof storage

for such overlap areas and the need for using equally

long message buffersduring the data exchange pro-

ce_ resultsin substantialmemory overhead. The in-

troduction of such overlap areas leads to an imple-

mentation equivalent to the sequential one, since a

strictcoherency is maintained between data in the

overlap areas and those on the subdomain internal

boundaries. At firstglance it appears as ifthe pres-

ence of fourth-differencedissipationterms would re-

quire two extra grid points in each of the six direc-

tions for the overlap areas. However, by exchang-

ing the second-differencesduring the computation of

smoothing terms, the need for an extra layer of grid

points in the overlap areas is avoided. The data depen-

dency delay overhead in these computations is limited

to that associated with the exchange of data in the

overlap areas. The primary reason for such delays is

the load imbalances associated with subtasks of type

(a) and (e). In addition, there is an arithmetic over-

head, due to the redundant computation of various

flux data in the overlap areas as well as a commu-

nication overhead due to exchange of data in those
areas.

As mentioned earlier, the solution of the scalar

pentadiagonal systems induces global data dependen-

cies. There are a variety of concurrent algorithms
available for this task. We have considered three such

algorithms: (1) Complete-exchange based implemen-

tations (CE-GE), (2) Pipelined Gaussian elimination

(PGE), and (3) Sub-structured Ganssian elimination

followed by solution of the reduced system via bal-

anced odd-even cyclicreduction(SGE-BCR). The com-

pleteexchange or globaltranspose based implementa-

tions are limited to O(N _) degree of extractable par-

allelism but contain no arithmetic overhead. Also,

such implementations are typically associated with high

memory and communication overhead. The inter-

processor communication is characterized by a rela-

tively small number of messages of length O(N3). The

pipelined (both one-way and two-way) Gaussian elim-

ination algorithms, while exhibiting O(N a) degree of

parallelismand no arithmetic overhead, sufferfrom

high memory overhead and processor idling during

pipeline fillingand draining. In addition, they are

characterized by a large number of relativelyshort

messages that may lead to inefficiencieson systems

with high message latencies. In contrast, the sub-

structured Gaussian eliminationbased algorithms ex-

hibit O(N 3) degree of readilyextractableparallelism,

but sufferfrom relativelyhigh arithmeticand memory

overhead.

Under the uni-partitioningschemes, subdomains

containing externalboundary facesare held only by a

subsetofthe processors.Therefore task (a)isprocessed

only by those nodes holding those faces,while others

may be idle. The severity of this load imbalance is

short-lived for most common types of boundary condi-

tions needed in practical flow simulations.

The Baldwin-Lomax turbulence model s is imple-

mented in the current code. This model requires search-

ing in the wall-normal direction for the maxima of cer-

tain flow parameters. In the parallel version this often

requires searching across several processors. The model

finds local maxima in each processor and compares

values from all applicable processors, in order to give

eddy viscosity values which are unaffected by the parti-

tioning of the grid. The searches are performed largely

in parallel, so that the computational time consumed

is minimized. In fiat plate test cases, searching only

the points assigned to one processor added 5 percent

to the total computational time. Searching through 4

processors in the wall-normal direction added only 3

percent more time.

Implementation of Composite Grid Schemes

The overset grids used in the Chimera approach

result in the embedding of both outer boundaries and

solid body regions of one grid within the computa-

tional domains of other grids. The embedding of the

solidbody regionsrequiresthat certaingridpoints be

blanked out within some neighborhood of the solid

body region. These points are referred to as hole

points. The grid points that liein the fringesof this

blanked-out regionform an artificialinteriorboundary

and serve to impose the effectof the embedded solid

body regionupon the grid.Consequently, the inter-grid

boundaries ofa composite gridare formed by the union

of the embedded outer boundaries of the minor grids
and the artificialinteriorboundaries of the blanked-out

regions.In oversetgrid schemes, the effectofone grid

is imposed upon the other by interpolatingintergrid

boundary data between them. In practice,thisprocess

iscarriedout at the end of each time step on each grid

and isreferredto as intergridcommunication.

The flowfielddata needed to update the intergrid

boundary points is interpolatedfrom the solutionsin

the neighboring grids.Most interpolationschemes seek

data from the nearesthexahedral computational cellin

the overlap region.Such cellsare referredto as donor

cells.Therefore,to successfullycarry out the intergrid

communication process requires the identificationof

three types ofgrid points in allcomponent grids:the

hole points, the intergridboundary points, and the

donor cells.Currently,thisinformation isprovided as

input by eitherPegsns or DCF3D in a preprocessing

step.

On conventionalsupercomputers, each component

grid of the composite grid isgenerallytreatedsequen-

tially,while the other components resideina secondary

storage device such as the SSD on Cray Y-MP. The

iPSC/860 implementation ofthe oversetgridscheme is

based on the zonal decomposition approach. Interzone

communication isaccomplished through the inter-cube

communication facilitydeveloped by Barszcz_. The

zonal decomposition exploitsthe functionalparallelism

among multipleoverlapping grids,and the data paral-

lelismwithineach individualgrid.As a result,allcom-

ponent grids are computed concurrently on different

groups ofprocessorswith independent spatialdata de-

composition withineach grid.The data partitioningis

carriedout ina manner that optimizes the performance

of the parallelizedimplicitflow solver for each grid.

The number of processorsassignedto each component

grid isdecided on the basisof the computational load

associatedwith the flowsolverused forthat grid.Given

a fixed number of processors, this approach allows good

staticload balancing across the clustersof processors

involvedin the flowsolverphase.

The intergriddata interpolationand communi-

cation is done concurrently, through a looselysyn-

chronous approach. At the end of a time step,proces-

sors holding donor-cellsin each component grid send

the interpolatedflow fielddata to the appropriatepro-

cessorsof the other component grids. Each processor

proceeds to the computations of the next time step of

the flow solveras soon as itsintergridcommunication

phase iscompleted. A distributedintergridcommuni-

cation data structureisused to minimize the memory

overhead. No attempt is made to equidistributethe

intergridboundary pointsor the donor cellsassociated

with each b,rid.Thus, during intergridcommunication,

thereare likelyto be significantload imbalances within

each group of processorsas wellas acrossthe groups of

processors.This load imbalance istolerable,as long as

the time spent on intergridcommunication processisa

relativelysmall fractionofthe time requiredtocompute

a singletime step of the flow solver.The timing data

forthe composite gridconfigurationsinvestigatedso far

indicatethat the intergridcommunication overhead is

lessthan 3%.

I/O Considerations

Input and output ofgrid and solutionfilesare usu-

ally minor considerationson conventional computers.

Methods for I/O are straightforward,and practically

Z

Wl_M_loGM Grid spilt among 4 nodes

,_- _- T 'r

Stonlge or_r on dl_

Figure 1. Schematic of a 32 point grid dis-

tributed among 4 nodes. To reassemble the

grid in a single file requires 16 writes to the
CFS.

no CPU time is consumed, since idle processors become

available to other users. On the iPSC/860, processors

which are waiting for I/O are still dedicated to the

calling process, so any idle CPU time is lost. Also,

the parallel aspects of I/O between multiple processors
and multiple disks add to the complexity of the opera-

tion. During processing, the data representing the flow
solution is distributed across many processors. When
that data is written to the disks of the Concurrent File

System (CFS), it is often useful to store the data as a

single array of values, rather than in pieces which corre-

spond to each processor. This allows the solution to be

used for restart on any number of processors, and allows

postprocessing on workstations without re-ordering the

data. In general, this requires each processor to write

small amounts of data to many separate locations on

the disks, to order the data correctly. This is illustrated

for a very small grid in Fig. I. These numerous write

operations result in inefficient use of the cacheing ca-

pability of the I/O subsystem, and contribute to delays

due to contention for the I/O nodes.

In early testing of the I/O routines, up to 5 Mb/sec

was achieved from 16 processors to a single output file.

For larger numbers of processors, the rates actually
drop. Several tests were made with a 402,000-point

grid, which requires a minimum of 32 processors. Ad-

ditional processors were included either by distributing

the single grid over more processors, or by running

multiple 32-processor cases in parallel. Solution files

were written in two ways: either in a single file as

described above, or as separate files containing the data

from each processor. The multiple-file form of output

is faster, and is used when a solution will be restarted

on the same number of processors. The results are

summarized in Fig. 2, which shows that the combined

I/O rate from all processors never exceeds 2 Mb/sec

for these cases. The transfer of a single-file CFD solu-

tion from the processors to CFS files requires from 4

to 26 times as long as an iteration of the flow solver.

Solution output to separate files from each processor is

2.0

1.5"

t_

0.5-

0.0

....-'"" .-e-- I _ MuJ11-flle

......- °4,-. 1 .,,_ulmL I fill
_. Mt/i-m_uinL Mu/d-l_. ..-

-e- Mglli-mlu_-L I film

=================================

32 64 128

Processors

Figure 2. Transfer rates for 402,000-point

CFD solution files. The solutions are output

either one ISle per solution, or one file per pro-

cessor (multi-file). Multi-solution indicates

that several solutions were output, each from

a separate group of 32 processors.

somewhat faster, requiring from i to 8 times as long as
a solver iteration.

Data transfer rates from the processors to the CFS

are acceptable for steady state problems, which run
hundreds of iterations before a solution must be stored.

For unsteady problems, solutions must be stored fre-

quently and I/O will consume a substantial fraction of

the total CPU time for the problem. As these problems

become more common, and as the computational speed

ofparallelcomputers increases, the [/O subsystems will

have to improve rapidly.

Computational Results

The new parallel code was tested on a simple

square-duct case, and found to give identical results

to the serial version of the algorithm. Since the
code behaves identically, validation work done with

the AKC3D algorithm on serial machines is applicable

to the new code as well. Several solutions produced

with the new parallel code serve to add confidence

in the parallel implementation, and to demonstrate

the applicability of the code to the High Speed Civil

Transport (HSCT). After the test cases are described,

performance results are given, along with an evaluation

of the current levels of performance.

The first results described are validation cases, for

which there are some analytical or numerical results

available for comparison. These include laminar and

turbulent fiat-plate boundary layers, and an Euler com-

putation about a wing-body. Additional demonstration
calculations include a Navier-Stokes solution about the

wing-body, and a multiple zone calculation of the wing-

body with generic engine nacelles added.

6

[.5 ¸

[.4'

1.3'

1.2"

1.I"

1.0

_ I_N AJC3D

o i 3 4

Eta

Figure 3. Temperature in the laminar bound-

ary Layer 1 inch from the leading edge of

a flat plate at Re = 159,900, Moo = 2.5,

Too = 216.5K, Twou = 273K, Pr = 1.0

0.03

0.0c o.oo o. 5 ,.o0
U / Uiaf

Figure 4. Turbulent boundary layer 1 meter

from the leading edge of a flat plate at Re =

1,000,000, Moo = 2.0, Too = 275K, T.,.u =

370K, Pr = 0.72

Validation Cases

Two supersonic flat plate boundary layer cases

show excellent agreement with serial codes. Fig. 3

shows the temperature profile in a laminar boundary

layer over an isothermal fiat plate. An analytical solu-

tion is plotted, as well as the results from the F3D I°

flux-split algorithm, which was run on a Cray Y-MP.

The points resolving the boundary layer in each case

extended across several processors in both the stream-

wise and wall-normal directions, providing an example

of how the flow solver and boundary layer model are

unaffected by processor boundaries. A boundary layer

profile for the turbulent case is shown in Fig. 4. It

compares well with F3D results from the Cray.

The first three-dimensional test case was an Euler

solution about a modern HSCT wing-body. Nearly

one-half million points were used in a 67x60x112 grid.

The grid was generated in crossflow planes, so that

Figure 5. Upper surface grid on the wing-

body. Only half of the points are shown in
each direction.

Figure 6. A crossflow plane of the volume

grid at about 60 percent of body length. The

Euler grid is on the left. The grid on the right
has been modified to improve boundary layer

resolution for turbulent cases. Only half of the

points are shown in each direction.

a parabolized code, UPS zz, could easily be used for

comparison. Each 67x60 point croesflow plane was

a C-mesh covering half of the wing-body, plus one

reflected plane. Fig. 5 shows the surface grid in a
planform view, and Fig. 0 shows a crossflow plane of

the volume grid. In order to distribute points among

32 processors, the grid was divided into 8 partitions in

the streamwise direction, and 4 partitions in the body-
normal direction. No fewer than 32 nodes could be used

for this case, due to memory limitations.
The case was run with a freestream Much num-

ber of 2.1, and an angle of attack of 4.75 °. This is

approximately the angle of attack for maximum lift-

to-drag ratio. The converged solution was compared
to the UPS results. Surface pressures, such as the

centerline pressures shown in Fig. 7, compare well.

The differences between the solutions are primarily due

to differences in the way the two codes resolve the

flow. The UPS code adds many intermediate planes

in the streamwise direction, enhancing resolution, but

introducing some differences due to interpolation.

7

X/L DL_ancc

Figure 7. Pressures on the wing-body center-
line.

Demonstration Calculations

The wing-body has been solved_ a Navier-Stokes

calculation,with the 8aldwin-Lomax turbulencemodel.

This case demonstrates the Navier-Stokes capability,

but does not validateit,sinceonly Euler solutionswere

used with thisgeometry on serialcomputers.

The case was run at the same Mach number and

angle of attackas the Euler case,and a Reynolds num-

ber based on body length of one million. In actual

flight,the vehiclewould have a Reynolds number on

the order of 5.0 x 10s per meter. The lower number

used here isreasonable for wind tunnel models, and

allows the number of grid points to be kept small. A

very simple grid adaption approach was used tomodify

the Euler grid to givea Y-plus of about 0.5everywhere

on the body. Y-plus isdefinedhere asy+ - (pUtAy/_),

where 0"tisthe flowspeed tangent to the body, and Ay

is the normal distance from the wall to the adjacent

grid point. The grid was also modified to move the

outer boundary inward, shiftingunneeded pointsfrom

outsidethe shock into the activeflowfield.The azlap-

tion was repeated twice, giving an improved grid with

negligible computational cost. The grid can be seen on

the right side of Fig. 6.

Lift and drag results for the wing-body are shown

in Figs. 8 and 9. The lift-to-drag ratio for the turbulent
Navier-Stokes case is about three times lower than for

the Euler case. The difference between the two is

exaggerated by the low Reynolds number used in the

test ca_e, and in fact the turbulent case has the same

lift-to-drag ratio as the Euler case if skin friction drag

is ignored.
The final demonstration calculation is based on the

Euler wing-body case. Grids for two generic engine
nacelles were generated, and placed under the wing-

body to demonstrate the overset-grid capability. Each

nacelle was treated with two grids: one for the exte-

rior, and another to allow flow through the interior.

The two grids about each uacelle exchange information

2

// J//J'

X/L Distance

Figure 8. Lift coefficient results from Euler,

laminar and turbulent cases on the wing-body.
Moo - 2.1, c_ - 4.75 °, Re - 1,000,000

_J

'3

i #. "It

¢
X/L Distance

Figure 9. Drag coefficientresultsfrom Euler,

laminar and turbulentcaseson the wing-body.

Moo - 2.1,1",--4.75°,Re --1,000,000

with each other and with the wing-body grid,as shown

for example in Fig. 10. The planes shown are nei-

ther fiatnor coincident,but they are closeenough to

serve as a 2-D illustrationof the Chimera grid scheme,

which isfullythree dimensional. The planes shown

are upstream of the nacelle,so no points are cut out

of the wing-body grid at that point. The nacellelip

has zero thickness,and there is no diverter in this

calculation.

The convergence rate of the five-zonewing-body-

nacellecomputation was nearly the same as for the

wing-body alone. Since six additionalprocessorshan-

dled computations for the nacellegrids,the time per

iterationincreased by only about 2.5 percent, which

representsthe cost of the Chimera interpolationand

information exchange. The liftincrement due to the

nacelleswas calculated,but proved to be negligiblefor

thiscase. The changes in pressure on the wing lower

surface are shown in Fig. 11.

8

Field Grid

lie

Figure 10. Grid interfaces just upstream of the inboard nacelle. A: Wing-body field grid receives
information from nacelle outer grid; B: Field grid from nacelle core; C: Outer from core; D: Outer from
field; E: Core from outer

Figure 11. Pressure increments due to to
flow-through nacelles. 4+. or "-" indicates
pressure above or below the wing-body case.

Performance

In order to support multidisciplinary optimization
with practical turnaround times for design work, the
code for analysis of each discipline must run quickly
and scale efficiently on parallel machines. This sec-

tion describes several aspects of performance, including
single-processor computational rates, grid partitioning

strategy, scalability, and choice of solution method for
the pentadiagonal systems. All performance data re-
ported are for 64-bit arithmetic and implementations
based entirely on FORTRAN.

On a single i860 node, the sustained performance

for ARC3D is about 6 MFLOPS, or 10% of the peak
performance of the microprocessor. The primary cause

of this degradation is the inadequate bandwidth and
high latency for data movement between the chip's
floating point registers and external memory. Another
factor is the high cost of floating point divide operations
and intrinsic functions such as square roots. The lack

of efficient scheduling and pipelining of instructions by
the still-evolving Fortran compilers also reduces com-
putational rates. All megaflops rates quoted are cal-
culated by comparing computing time per iteration on
the iPSC/860 to the time on a Cray Y-MP. Operations
counts from the Cray Hardware Performance Monitor
are used. The actual number of floating point opera-
tions on the parallel machine is somewhat higher.

The scalability of the CFD module has been mea-

sured over a wide range of processor counts and grid
sizes. The most favorable way of measuring scalability
is to assume that the problem size will scale up with the

8OO

•_. 400"

:_ 200
el

0
0 32 64 96

NumbeT of Pmceum_

Figure 12. Performance of parallel ARC3D on

theiPSC/860.Problem sizeisscaledwiththe

number ofprocessors.

128

8OO

'_r 400

G

-....64.0 k grid /
-.-.-- 128 k Irid

-D- 512 k Irid

. ._y Y-M? / x

. ,,.' - _o_o , .. *...-

...=..-.-.

0 32 64 96 128

Number of Processors

Figure 13. Performance of parallel ARC3D
on the iPSC/860. Effectof spreadingfixed-

sizedproblems acrossadditionalprocessors.

Cray Y-MP single-processorperformanceon

thevariousgridsisalsoshown.

number of processors available. The present code can
compute up to about 14,000 grid points on each proces-
sor, given 8 Mb of memory per processor. Keeping the
number of points near this maximum gives the results
shown in Fig. 12. The =ideal speedup" curve indicates
the speedup calculated by simply multiplying the com-
putational rate of the CFD code on one processor by

the number of processors. Let efficiency be the ratio of
the actual processing rate to the "ideal speedup" case.
By the time 128 processors are in use, efficiency has
dropped to 70 percent, but the drop is gradual. At this

point the code is operating at 527 mega_lops. The cause
of this performance degradation is the various types
of parallel implementation overheads identified earlier.
The cost associated with some of these overheads as

a fraction of the total computational cost appears to

grow at a superlinear rate as the total number of grid
points and the number of processors increases.

In practice, grid sizes do not scale up indefinitely.
Fig. 13 shows how performance varies when the number

iPSC/Se0

Prob. Sise No. of Proc.

Algorithm 32 64

CE-GE 0.23 0.14
(12o) (196)

(24x24x24) PGE !0.29 0.19

(94) (142)

SG F_,-BCR 0.47 0.32

(88) (s4)
CE-GE I.OO 0.52

(13e) (28o)
(4Ox40x40) PGE 1.13 0.67

1(120) (202)

SGE-BCR _._ 0.99

(83) 4136)

CE-GE - 3.99

(80xSOxS0) PGE - 4.31

(2_)
SGF_-BCR - S.71

(198)
CE-GE

(160x80x80) ! PGE

SGE,-BCR

Cray-YMP

Time/step

128 (MFLOPS)

0.11

2sl)

0.13 0.22see.

(201) (123)

0.22

(12e)
0.34

(401)
0.44 0.8T5 sec.

(31o) 055)
0.64

(2:ix)
2.05

(553)
2.50 6.85 =ec.

(453) 41_s)
3.38

(334)
4.05

(588)
4.61 13.3 sec.

(490) 0_'o)
5.87

(ass)

Table 1. ARC3D performance with various

algorithms for solution of pentadiagonal sys-
tems.

of processorsisincreasedand gridsizeisheldcon-

stant.Inmost cases,theefficiencydropsby atleastI0

percentforeach factor-of-twoincreaseinthe number

ofprocessors.Thus, whileperformancescaleswellas

gridsizeincreases,thereturnforusingmore processors

diminishesdramaticallyoncethelargestusefulgridsize

isreached,and each processorhas lesscomputational
work todo.

TableIshows thedependenceofthetimeperstep

on thealgorithmsusedtosolvethemultiplesystemsof

pentadiagonalequations.On the iPSC/$60,the best

performanceforany gridsizeand number ofprocessors

isobtainedforthecomplete-exchangebasedimplemen-

tations(CE-GE), while the sub-structuredGaussian

eliminationbasedalgorithms(SGE-BCR) exhibitpoor

performance.This isprimarilydue tohigharithmetic

overheadassociatedwith thisclassof algorithms,de-

spitetheirhighdegreeofeasilyexploitableconcurrency.

The pipelinedGaussianeliminationbasedimplementa-

tions(PGE) performwell,butappeartosufferfromthe

relativelyhighmessagelatencyoftheiPSC/860.Mem-

ory usage forthesealgorithmsiscalculatedin64-bit

wordspergridpoint:67.5forCE-GE, 44.5forone-way

PGE, and 49.5foreithertwo-way PGE or SGE-BCR.

The calculationignoresthe storageofoverlapregions,

I0

and counts integer arrays as one-half word. The data

for results in Figs. 12 and 13 were obtained using the

two-way PGE algorithm for solving pentadiagonal sys-

tems. The applications examples were computed with

the one-way PGE scheme. The choice of algorithms

was made largely on the basis of memory usage. The

PGE methods allow the use of larger computational

grids or fewer processors, compared to the faster CF_,-

GE approach.

Processor

Partition

(Pi*Pi*P)
(gx4x4)

Time/step
Problem Size

(80x40x40)
0.76

f80x8Ox80)
2.72

(8x8x2) 0.88 3.01

(16x8xl) 1.06 3.96

(32x4xl) 1.30 6.47

(64x2xl) 2.10

Table 2. Effectof subdomain aspect ratioon perfor-

ma4"Ice.

The results in Table 2 show the dependence of

time-per-step for a fixed grid size on the aspect ratio

of the processor grid for a two-way pipelined Gaussian

elimination based implementation. Optimum perfor-

mance is obtained when the processor grid associated

with the spatial data decomposition is proportional to

the computational grid dimensions. Performance vari-

ations up to a factor of three can result from inap-

propriate spatial data decompositions. Similar results

hold for implementation based on other pentadiagonal

solution algorithms as well.

For practical use, the grid should be only large

enough to resolve the flow physics with the required

accuracy. For aircraft design, a range of 0.1 to 10.0

million grid points is reasonable. The real goal is not to

reach some level of gignflops or terallops, but to reduce
the time to obtain a solution. There will always be a

point of diminishing returns in the use of large numbers

of processors. Fig. 13 suggests that for practical grid

sizes, processor counts in the hundreds, rather than

thousands, will be most effective. Interprocessor com-

munications and per-processor computing rates both

play a part in determining the optimal number of pro-

cessors. Both areas must improve substantially if low
solution turnaround times are to be achieved. Faster

communication can improve efficiency, allowing effec-

tive use of more processors, but the available speedup

with 128 processors will be no more than a factor of
2 for most of the cases tested. Processors with higher

sustained computational rates are essential, but in turn

give a speedup which is limited by the communication

latency, bandwidth, and network connectivity.

Another approach to high performance scalability

isto do more than one problem at a time. Many design

optimizersrun at leastone testcase for each variable

to be optimized, inorder to calculatederivativesbefore

stepping to a new design point. These cases can be

run in parallel,with a considerable improvement in

efficiency.For example, an optimizationcase might use

a grid of 256,000 points. On 128 processors,the case

would run at 420 MFLOPS (seeFig. 13). For four cases

run concurrentlyon 32 processorseach, the processing

rate would be 142 x 4, or 568, MFLOPS, finishing26

percentsooner.

Future Work

The CFD module willbe combined with an opti-

mizer,foruse inaerodynamic optimization.Integration

with structuresand propulsion codes willproceed, to

give the abilityto analyze and optimize high speed

aircraftat cruiseconditions. Other disciplines,such

as controls,willbe included later,tobroaden the range

offlightconditionsforwhich these toolsare useful.

The parallelizationof the code depends only on

having a MIMD (MultipleInstruction,Multiple Data)

computer with a message passing capability. Most

current and emerging parallelcomputer architectures

meet thisdescription,and the code willbe implemented

on those which become availableas HPCCP testbed

machines. Each new implementation willbe evaluated

to ensure that the capabilitiesof these machines are

used efficiently.

Conclusions

A new CFD module provides significantprogress

toward the goal of performing multidisciplinarycom-

putations on highly parallelcomputers. The module

computes both Euler and Reynolds-averaged Navier-

Stokes solutionsabout complex aircraftconfigurations.

It coversflow speeds from takeoff,through the HSCT

flightregime,tohigherMach numbers, provided perfect

gas and continuity amumptions apply. An algebraic

turbulence model and a wide selectionof boundary
conditionsare included.

It isnow possible to compute compressible flow-

fieldswith familiartools,but on computer architectures

which willscaleto unprecedented levelsofperformance.

This capabilityis availablefor both single-discipline

fluidsresearch,and for inclusionin multidisciplinary

analysisand optimization.

There issubstantialroom forimprovement in all

areas affectingCFD performance on parallelcomput-

ers. With nearly two orders of magnitude between the

usable single-processorperformance of the iPSC/860

and the best vectorsupercomputers, there isroom for

dramatic improvements. The cost-effectivenessofthose

improvements, particularlyin the areasof memory ac-

cess speed and interprocessorbandwidth, willbe crit-

ical. User codes will improve gradually,as program-

ming forparallelmachines becomes betterunderstood,

11

or perhapsmore rapidly,ifimproved algorithmicap-

proaches axe discovered. Computation of singleCFD

problems at teraflopsratesdoes not seem to be within

reach,but teraflopsmultidisciplinaryoptimizationmay

be only a few yeats away.

Acknowledgements

Computational resourceswere provided by the Nu-

merical Aerodynamic Simulation (NAS) Program at
NASA Ames Research Center. This researchhas been

funded through NASA Ames Research Center Cooper&-
tireAgreement NCC 2-505 and Contract NAS 2-12961.

References

IRenze, K. J.,Buning, P. G., and Rajagopalan, R.

G., "A Comparative Study of Turbulence Models for

Overset Grids,"AIAA Paper 92-0437, January, 1992.

2pulliam, T. H., and Chaussee, D. S., "A Diagonal

Form of an ImplicitApproximate-Factorization Algo-

rithm," Journal of Computational Physics, Voi. 39, pp.
347-363, 1981.

3Holst,T. L.,Thomas, S.D., Kaynak, U.,Gundy, K.

L.,Flores,J.,and Chaderjian, N. M., "Computational

Aspects of Zonal Algorithms forSolvingthe Compress-

ible Navier-Stokes Equations in Three Dimensions,"

Numerical Mefhods in Flmid Mechanics [, edited by

K. Oshima, Inst. of Space and Astronautical Sciences,
Tokyo, 1985, pp. 113-122.

4Ryan, J. S., Flores, J., and Chow, C.-Y., "Devel-

opment and Validation of a Navier-Stokes Code for

Hypersonic External Flow," Jomrnai of Spacecraft and

Rockets, Vol. 27, No. 2, 1990, pp. 160--166.

5Benek, J. A., Dougherty, F. C., and Buning, P. G.,

"Chimera: A Grid-Embedding Technique," AEDC-TR-
85-64, December 1985.

SSuhs, N. E., and Tramel, R. W., "PEGSUS 4.0

User's Manual," AEDC-TR-91-8, June 1991.

VMeakin, R. L., "A New Method for Establishing

Intergrid Communication among Systems of Overset

Grids," ALAA-91-1586-CP, AIAA 10th Computational

Fluid Dynamics Conference, June 14-27, 1991, Hon-

olulu, Hawaii.

SBaldwin, B. S. and Loma_¢, H., "Thin-Layer Approx-

imation and Algebraic Model for Separated Turbulent

Flows," AIAA Paper 78-257, January 1978.

9Baxszcz, E., "Intercube Communication for the

iPSC/880," Proceedings of the Scalable High Perfor-

mance Computing Conference, pp. 307-313, Williams-
burg, Virginia, April 1992.

l°Ying, S. X., Steger, J. L., Schiff, L. B., and

Baganoff, D., "Numerical Simulation of Unsteady, Vis-

cous, High-Angle-of-Attack Flows using a Partially

Flux Split Algorithm," AIAA Paper 86-2179, August
1986.

llLawrence, S. L., Chaussee, D. S., and Tannehill,

J. C., "Application of an Upwind Algorithm to the

Three-Dimensional Paxabolized Navier-Stokes Equa-
tions," AIAA paper 87-1112, June 1987.

12

